Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31024858

RESUMO

Salmonella effectors translocated into epithelial cells contribute to the pathogenesis of infection. They mediate epithelial cell invasion and subsequent intracellular replication. However, their functions in vivo have not been well-identified. In this study, we uncovered a role for Salmonella outer protein B (SopB) in modulating necroptosis to facilitate bacteria escape epithelial cell and spread to systemic sites through a Salmonella-induced colitis model. Mice infected with SopB deleted strain ΔsopB displayed increased severity to colitis, reduced mucin expression and increased bacterial translocation. In vitro study, we found there was an increased goblet cell necroptosis following ΔsopB infection. Consistently, mice infected with ΔsopB had a strong upregulation of mixed lineage kinase domain-like (MLKL) phosphorylation. Deletion of MLKL rescued severity of tissue inflammatory, improved mucin2 expression and abolished the increased bacterial translocation in mice infected with ΔsopB. Intriguingly, the expression of sopB in LS174T cells was downregulated. The temporally regulated SopB expression potentially switched the role from epithelial cell invasion to bacterial transmission. Collectively, these results indicated a role for SopB in modulating the onset of necroptosis to increased bacteria pathogenesis and translocated to systemic sites.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Necroptose/efeitos dos fármacos , Infecções por Salmonella/patologia , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Translocação Bacteriana , Linhagem Celular , Colite/microbiologia , Colite/patologia , Modelos Animais de Doenças , Deleção de Genes , Células Caliciformes/microbiologia , Células Caliciformes/fisiologia , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Virulência/deficiência
2.
Mol Immunol ; 107: 132-141, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30738250

RESUMO

The maintenance of intestinal tissue homeostasis is vital for the resistance against inflammatory bowel diseases (IBDs). Necroptosis is identified as an alternative mode of regulated cell death, which plays a pivotal role in tissue homeostasis. Thus, the roles of RIP3-mediated necroptosis in intestinal inflammation have been extensively studied. However, the biological implications of the mixed lineage kinase-like protein (MLKL), a molecule downstream of RIP3 in gut remain unclear. In this study, the role of MLKL in DSS-induced colitis was examined, and the contribution of gut microbiota was also determined. Compared with non-littermate WT mice, the survival rate, clinical score, intestinal damage and intestinal mucosal barrier integrity of non-littermate MLKL-deficient mice are significantly improved. MLKL deficiency prevents inflammatory cytokines production and MAPK signaling activation. Hence, MLKL deficiency inhibits DSS-induced colitis. Moreover, we proved that DSS susceptibility difference between two genotypes is not driven by intestinal microbiota based on the co-housing of two non-littermate genotypes and qPCR detection of fecal dominant bacterial taxa.


Assuntos
Colite , Sulfato de Dextrana/toxicidade , Microbioma Gastrointestinal/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Proteínas Quinases/deficiência , Animais , Colite/induzido quimicamente , Colite/genética , Colite/imunologia , Colite/microbiologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/microbiologia , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Proteínas Quinases/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia
4.
Front Immunol ; 9: 119, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29456533

RESUMO

The intestinal mucosal barrier is critical for host defense against pathogens infection. Here, we demonstrate that the mixed lineage kinase-like protein (MLKL), a necroptosis effector, promotes intestinal epithelial barrier function by enhancing inflammasome activation. MLKL-/- mice were more susceptible to Salmonella infection compared with wild-type counterparts, with higher mortality rates, increased body weight loss, exacerbated intestinal inflammation, more bacterial colonization, and severe epithelial barrier disruption. MLKL deficiency promoted early epithelial colonization of Salmonella prior to developing apparent intestinal pathology. Active MLKL was predominantly expressed in crypt epithelial cells, and experiments using bone marrow chimeras found that the protective effects of MLKL were dependent on its expression in non-hematopoietic cells. Intestinal mucosa of MLKL-/- mice had impaired caspase-1 and gasdermin D cleavages and decreased interleukin (IL)-18 release. Moreover, administration of exogenous recombinant IL-18 rescued the phenotype of increased bacterial colonization in MLKL-/- mice. Thus, our results uncover the role of MLKL in enhancing inflammasome activation in intestinal epithelial cells to inhibit early bacterial colonization.


Assuntos
Células Epiteliais/imunologia , Inflamassomos/imunologia , Mucosa Intestinal/imunologia , Proteínas Quinases/imunologia , Infecções por Salmonella/imunologia , Animais , Feminino , Interleucina-18/farmacologia , Masculino , Camundongos Knockout , Proteínas Quinases/genética , Proteínas Recombinantes/farmacologia
5.
Mol Immunol ; 90: 280-286, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28846926

RESUMO

OBJECTIVE: Salmonella is known to evolve many mechanisms to avoid or delay inflammasome activation which remain largely unknown. In this study, we investigated whether the SopB protein critical to bacteria virulence capacity was an effector that involved in the regulation of inflammasome activation. METHODS: BMDMs from NLRC4-, NLRP3-, caspase-1/-11-, IFI16- and AIM2-deficient mice were pretreated with LPS, and subsequently stimulated with a series of SopB-related strains of Salmonella, inflammasome induced cell death, IL-1ß secretion, cleaved caspase-1 production and ASC speckle formation were detected. RESULTS: We found that SopB could inhibit host IL-1ß secretion, caspase-1 activation and inflammasome induced cell death using a series of SopB-related strains of Salmonella; however the reduction of IL-1ß secretion was not dependent on sensor that contain PYD domain, such as NLRP3, AIM2 or IFI16, but dependent on NLRC4. Notably, SopB specifically prevented ASC oligomerization and the enzymatic activity of SopB was responsible for the inflammasome inhibition. Furthermore, inhibition of Akt signaling induced enhanced inflammasome activation. CONCLUSIONS: These results revealed a novel role in inhibition of NLRC4 inflammasome for Salmonella effector SopB.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteínas de Bactérias/genética , Proteínas de Ligação ao Cálcio/genética , Caspase 1/metabolismo , Evasão da Resposta Imune , Inflamassomos/imunologia , Salmonella/imunologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD , Caspase 1/genética , Caspases/genética , Caspases Iniciadoras , Proteínas de Ligação a DNA/genética , Ativação Enzimática/imunologia , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Salmonella/genética
6.
Front Immunol ; 8: 916, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824641

RESUMO

Infectious agents can reach the placenta either via the maternal blood or by ascending the genito-urinary tract, and then initially colonizing the maternal decidua. Decidual stromal cells (DSCs) are the major cellular component of the decidua. Although DSCs at the maternal-fetal interface contribute to the regulation of immunity in pregnancy in the face of immunological and physiological challenges, the roles of these DSCs during viral infection remain ill defined. Here, we characterized the response of DSCs to a synthetic double-stranded RNA molecule, polyinosinic-polycytidylic acid [poly(I:C)], which is a mimic of viral infection. We demonstrated that both transfection of cells with poly(I:C) and addition of extracellular (non-transfected) poly(I:C) trigger the necroptosis of DSCs and that this response is dependent on RIG-I-like receptor/IPS-1 signaling and the toll-like receptor 3/TIR-domain-containing adapter-inducing interferon-ß pathway, respectively. Furthermore, following poly(I:C) challenge, pregnant mixed lineage kinase domain-like protein-deficient mice had fewer necrotic cells in the mesometrial decidual layer, as well as milder pathological changes in the uterine unit, than did wild-type mice. Collectively, our results establish that necroptosis is a contributing factor in poly(I:C)-triggered abnormal pregnancy and thereby indicate a novel therapeutic strategy for reducing the severity of the adverse effects of viral infections in pregnancy.

7.
Cytokine ; 91: 30-37, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27987394

RESUMO

Inflammasomes are multiprotein complexes that control the production of IL-1ß and IL-18. NLRP3 inflammasome, the most characterized inflammasome, plays prominent roles in defense against infection, however aberrant activation is deleterious and leads to diseases. Therefore, its tight control offers therapeutic promise. Liver X receptors (LXRs) have significant anti-inflammatory properties. Whether LXRs regulate inflammasome remains unresolved. We thus tested the hypothesis that LXR's anti-inflammatory properties may result from its ability to suppress inflammasome activation. In this study, LXRs agonists inhibited the induction of IL-1ß production, caspase-1 cleavage and ASC oligomerization by NLRP3 inflammasome. The agonists also inhibited inflammasome-associated mtROS production. Importantly, the agonists inhibited the priming of inflammasome activation. In vivo data also showed that LXRs agonist prevented NLRP3-dependent peritonitis. In conclusion, LXRs agonists are identified to potently suppress NLRP3 inflammasome and the regulation of LXRs signaling is a potential therapeutic for inflammasome-driven diseases.


Assuntos
Inflamassomos/imunologia , Receptores X do Fígado/agonistas , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Peritonite/imunologia , Transdução de Sinais/imunologia , Animais , Caspase 3/imunologia , Linhagem Celular , Interleucina-1beta/imunologia , Receptores X do Fígado/imunologia , Camundongos , Peritonite/patologia , Transdução de Sinais/efeitos dos fármacos
8.
Mol Immunol ; 77: 26-33, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27449908

RESUMO

OBJECTIVE: RCAN1 (regulator of calcineurin 1) has been shown to be involved in various physiological and pathological processes. However, the biological implications of RCAN1 during gastrointestinal tract infection remain unclear. In this study, we tried to determine the role of RCAN1 in acute Salmonella infectious colitis. METHODS: Wild type and RCAN1-deficient mice or macrophages were used to characterize the impacts of RCAN1 on intestinal inflammation, inflammatory cytokines production, animal survival, and pathogen clearance following Salmonella challenge. RESULTS: Histologic and quantitative assessments showed increased inflammation and elevated proinflammatory cytokines production in RCAN1-deficient mice. The aberrant inflammatory response was recapitulated in primary bone marrow-derived macrophages. In addition, we reveal a novel regulatory role for RCAN1 in the proinflammatory JNK signaling both in vitro and in vivo. Further analysis showed that the increased inflammation in RCAN1-deficient mice contributed to pathogen clearance and host survival. CONCLUSIONS: The present study demonstrates that RCAN1 deficiency protects against Salmonella intestinal infection by enhancing proinflammatory JNK signaling.


Assuntos
Colite/imunologia , Colite/microbiologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Proteínas Musculares/imunologia , Salmonelose Animal/imunologia , Animais , Western Blotting , Proteínas de Ligação ao Cálcio , Colite/metabolismo , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Musculares/deficiência , Salmonelose Animal/metabolismo
9.
Sci Rep ; 5: 17935, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26659006

RESUMO

Inflammasomes are cytoplasmic, multiprotein complexes that trigger caspase-1 activation and IL-1ß maturation in response to diverse stimuli. Although inflammasomes play important roles in host defense against microbial infection, overactive inflammasomes are deleterious and lead to various autoinflammatory diseases. In the current study, we demonstrated that genipin inhibits the induction of IL-1ß production and caspase-1 activation by NLRP3 and NLRC4 inflammasomes. Furthermore, genipin specifically prevented NLRP3-mediated, but not NLRC4-mediated, ASC oligomerization. Notably, genipin inhibited autophagy, leading to NLRP3 and NLRC4 inflammasome inhibition. UCP2-ROS signaling may be involved in inflammasome suppression by genipin. In vivo, we showed that genipin inhibited NLRP3-dependent IL-1ß production and neutrophil flux in LPS- and alum-induced murine peritonitis. Additionally, genipin provided protection against flagellin-induced lung inflammation by reducing IL-1ß production and neutrophil recruitment. Collectively, our results revealed a novel role in inhibition of inflammatory diseases for genipin that has been used as therapeutics for centuries in herb medicine.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Autofagia/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Inflamassomos/metabolismo , Iridoides/farmacologia , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Transporte/genética , Caspase 1/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Flagelina/imunologia , Flagelina/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Lipopolissacarídeos/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR , Peritonite/etiologia , Peritonite/metabolismo , Pneumonia/etiologia , Pneumonia/metabolismo , Multimerização Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 2
10.
J Hypertens ; 33(8): 1658-65, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26002845

RESUMO

OBJECTIVES: Preeclampsia is a serious pregnancy-specific hypertensive syndrome that is characterized by widespread maternal endothelial dysfunction. Previous studies have shown that increased levels of circulating cell-free fetal DNA in women with preeclampsia correspond to the degree of disease severity; however, it is unknown whether this DNA is a key signal that contributes to the development of preeclampsia. The detection of DNA is critical to appropriate innate immune responses. The interferon-inducible protein 16 (IFI16) - a member of the HIN-200 family - is an innate immune receptor for intracellular DNA, which is implicated in the control of cell growth, apoptosis, angiogenesis, and immunomodulation; however, its role in preeclampsia remains unresolved. Here, we tested the hypothesis that this DNA can activate IFI16 in the placentas of women with preeclampsia and is sufficient to induce soluble fms-like tyrosine kinase 1 (sFlt-1) and soluble endoglin (sEng) production. METHODS: We characterized IFI16 in severe preeclamptic placentas and assessed whether DNA increased the release of sFlt-1 and sEng from trophoblast cells and placental explants. Furthermore, we determined whether IFI16 was involved in DNA-induced sFlt-1 and sEng production. RESULTS: Placental immunoreactivity and protein levels of IFI16 were significantly increased in women with preeclampsia compared to matched control women. Treatment of human trophoblasts with the IFI16 agonist poly(dA:dT) significantly increased IFI16 levels. Furthermore, poly(dA:dT) induced sFlt-1 and sEng production by human trophoblasts in an IFI16-dependent manner. CONCLUSIONS: We conclude that trophoblast cells respond to cell-free fetal DNA through the IFI16 receptor, resulting in the production of the preeclampsia-related antiangiogenic factors sFlt-1 and sEng.


Assuntos
Antígenos CD/biossíntese , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Receptores de Superfície Celular/biossíntese , Trofoblastos/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Adulto , Células Cultivadas , Endoglina , Feminino , Humanos , Fosforilação , Placenta/imunologia , Poli dA-dT/farmacologia , Gravidez , Biossíntese de Proteínas/efeitos dos fármacos , Transdução de Sinais , Trofoblastos/efeitos dos fármacos
11.
Int Immunopharmacol ; 21(2): 432-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24735817

RESUMO

Rabies is a viral infection of the CNS that is almost always fatal once symptoms occur. No effective treatment of the disease is available and novel antiviral strategies are urgently required. Street rabies viruses are field isolates known to be highly neurotropic. Aptamers are single-stranded oligonucleotides that bind their targets with high affinity and specificity and thus have potential for use in diagnostic and therapeutic applications. In this study, we demonstrate that the aptamers FO24 and FO21, which target RABV-infected cells, can significantly protect mice from a lethal dose of the street rabies virus FJ strain in vivo. Groups receiving preexposure prophylaxis had higher survival rates than the groups receiving postexposure prophylaxis. When mice were inoculated with aptamers (4 nmol) for 24h by intracranial or intramuscular injection prior to intramuscular inoculation with the FJ strain, approximately 60% of the mice survived. These results indicate that the FO21 and FO24 aptamers may be used to develop preventative antiviral therapy against rabies disease.


Assuntos
Antivirais/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Vírus da Raiva/efeitos dos fármacos , Raiva/tratamento farmacológico , Animais , Linhagem Celular , Cricetinae , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Oligonucleotídeos/farmacologia , Taxa de Sobrevida
12.
Virus Res ; 184: 7-13, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24486485

RESUMO

Rabies is a fatal central nervous system (CNS) disease caused by the neurotropic rabies virus (RABV). The therapeutic management of RABV infections is still problematic, and novel antiviral strategies are urgently required. We established the RVG-BHK-21 cell line, which expresses RABV glycoprotein on the cell surface, to select aptamers. Through 28 iterative rounds of selection, single-stranded DNA (ssDNA) aptamers were generated by exponential enrichment (SELEX). A virus titer assay and a real-time quantitative reverse transcription PCR (qRT-PCR) assay revealed that four aptamers could inhibit the replication of RABV in cultured baby hamster kidney (BHK)-21 cells. However, the aptamers did not inhibit the replication of other virus, e.g., canine distemper virus (CDV) and canine parvovirus (CPV). In addition, the GE54 aptamer was found to effectively protect mice against lethal RABV challenge. After inoculation with aptamers for 24h or 48h, followed by inoculation with CVS-11, approximately 25-33% of the mice survived. In summary, we selected aptamers that could significantly protect from a lethal dose of RABV in vitro and in vivo.


Assuntos
Antivirais/isolamento & purificação , Antivirais/farmacologia , Aptâmeros de Nucleotídeos/isolamento & purificação , Aptâmeros de Nucleotídeos/farmacologia , Vírus da Raiva/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/uso terapêutico , Aptâmeros de Nucleotídeos/uso terapêutico , Linhagem Celular , Quimioprevenção/métodos , Cricetinae , Modelos Animais de Doenças , Feminino , Camundongos Endogâmicos BALB C , Raiva/prevenção & controle , Vírus da Raiva/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Técnica de Seleção de Aptâmeros , Análise de Sobrevida , Carga Viral
13.
PLoS One ; 9(1): e79575, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465364

RESUMO

The VP2 structural protein of parvovirus can produce virus-like particles (VLPs) by a self-assembly process in vitro, making VLPs attractive vaccine candidates. In this study, the VP2 protein of canine parvovirus (CPV) was expressed using a baculovirus expression system and assembled into parvovirus-like particles in insect cells and pupae. Electron micrographs of VLPs showed that they were very similar in size and morphology when compared to the wild-type parvovirus. The immunogenicity of the VLPs was investigated in mice and dogs. Mice immunized intramuscularly with purified VLPs, in the absence of an adjuvant, elicited CD4(+) and CD8(+) T cell responses and were able to elicit a neutralizing antibody response against CPV, while the oral administration of raw homogenates containing VLPs to the dogs resulted in a systemic immune response and long-lasting immunity. These results demonstrate that the CPV-VLPs stimulate both cellular and humoral immune responses, and so CPV-VLPs may be a promising candidate vaccine for the prevention of CPV-associated disease.


Assuntos
Bombyx/metabolismo , Parvovirus Canino/metabolismo , Proteínas Virais/metabolismo , Vírion/imunologia , Vírion/metabolismo , Montagem de Vírus , Animais , Anticorpos/imunologia , Western Blotting , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Proliferação de Células , Doenças do Cão/imunologia , Doenças do Cão/prevenção & controle , Cães , Eritrócitos/metabolismo , Imunofluorescência , Hemaglutinação , Testes de Inibição da Hemaglutinação , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Parvovirus Canino/genética , Parvovirus Canino/imunologia , Pupa/metabolismo , Recombinação Genética/genética , Sus scrofa , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/química , Vacinas Virais/imunologia , Vacinas Virais/metabolismo , Vírion/ultraestrutura
14.
Virus Res ; 173(2): 398-403, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23333291

RESUMO

Rabies is an acute fatal encephalitis disease that affects many warm-blooded mammals. The causative agent of the disease is Rabies virus (RABV). Currently, no approved therapy is available once the clinical signs have appeared. Aptamers, oligonucleotide ligands capable of binding a variety of molecular targets with high affinity and specificity, have recently emerged as promising therapeutic agents. In this study, sixteen high-affinity single-stranded DNA (ssDNA) aptamers were generated by cell-SELEX. Viral titer assays revealed aptamers could specifically inhibit the replication of RABV in cells but did not inhibit the replication of canine distemper virus or canine parvovirus. In addition, the FO21 and FO24 aptamers, with and without PEGylation, were found to effectively protect mice against lethal RABV challenge. When mice were inoculated with aptamers for 24h prior to inoculation with CVS-11, approximately 87.5% of the mice survived. Here, we report aptamers that could significantly protect the mice from a lethal dose of RABV in vitro and in vivo, as demonstrated by the results for survival rate, weight loss and viral titers. These results indicate that FO21 and FO24 aptamers are a promising agent for specific antiviral against RABV infections.


Assuntos
Antivirais/administração & dosagem , Aptâmeros de Nucleotídeos/administração & dosagem , Vírus da Raiva/efeitos dos fármacos , Raiva/prevenção & controle , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , Modelos Animais de Doenças , Vírus da Cinomose Canina/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Parvovirus Canino/efeitos dos fármacos , Vírus da Raiva/fisiologia , Análise de Sobrevida , Carga Viral
15.
Int Immunopharmacol ; 14(3): 341-7, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22771543

RESUMO

Aptamers, functional nucleic acids, capable of binding a variety of molecular targets with high affinity and specificity, have emerged as promising therapeutic agents. In this study, the cell surface-systematic evolution of ligands by exponential enrichment (Cell-SELEX) strategy was used to generate DNA aptamers which targeted to the intact rabies virus-infected live cells. Through 35 iterative rounds of selection, five high-affinity single-stranded DNA (ssDNA) aptamers were generated by cell-SELEX. Virus titer assay and real-time quantitative reverse transcription PCR (qRT-PCR) assay revealed that all five aptamers could inhibit replication of rabies virus (RABV) in cultured baby hamster kidney (BHK)-21 cells; and T14 and F34 aptamers were most effective. The qRT-PCR also showed a dose-dependent inhibitory effect in BHK-21 cells. Collectively, these data show the feasibility of generating functionally effective aptamers against rabies virus-infected cells by the Cell-SELEX iterative procedure. These aptamers may prove clinically useful as therapeutic molecules with specific antiviral potential against RABV infections.


Assuntos
Antivirais/farmacologia , Aptâmeros de Nucleotídeos/farmacologia , DNA de Cadeia Simples , Vírus da Raiva/efeitos dos fármacos , Animais , Linhagem Celular , Cricetinae , Vírus da Raiva/crescimento & desenvolvimento , Técnica de Seleção de Aptâmeros
16.
Vet Microbiol ; 154(1-2): 49-57, 2011 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-21782359

RESUMO

The capsid structural protein VP2 of canine parvovirus (CPV) can self-assemble into highly organized virus-like particles (VLPs) and retain major immunoreactivity. In this study, different recombinant baculoviruses that expressed varying fusion proteins of the CPV VP2 protein with the T cell determinant and/or the linear virus-neutralizing epitope of rabies virus (RV) were generated. Infection with these baculoviruses changed BmN cell morphology and inhibited their proliferation as well as damaged silkworms and pupae. However, infection with these baculoviruses induced high levels of recombinant protein expression in silkworms and pupae. More importantly, these fusion proteins self-assembled VLPs with properties similar to CPV virions and retained their VP2-specific immunoreactivity, but some retained their RV-specific immunoreactivity. Interestingly, only one fusion protein, T-VP2, maintained its haemagglutination activity. These data indicated that these insertions and replacements in the loop 2 of VP2 did not interfere with the formation of VLP, and silkworms and pupae could act as a low-costing bioreactor for the production of heterologous proteins. Therefore, our findings may provide a new framework for the development of subunit vaccines against RV and CPV.


Assuntos
Bombyx/imunologia , Proteínas do Capsídeo/biossíntese , Epitopos/biossíntese , Parvovirus Canino/imunologia , Animais , Baculoviridae/imunologia , Bombyx/metabolismo , Proteínas do Capsídeo/imunologia , Células Cultivadas , Cães , Epitopos/imunologia , Vetores Genéticos , Testes de Hemaglutinação , Pupa/imunologia , Pupa/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...